Different pedunculopontine tegmental neurons signal predicted and actual task rewards.
نویسندگان
چکیده
The dopamine system has been implicated in guiding behavior based on rewards. The pedunculopontine tegmental nucleus (PPTN) of the brainstem receives afferent inputs from reward-related structures, including the cerebral cortices and the basal ganglia, and in turn provides strong excitatory projections to dopamine neurons. This anatomical evidence predicts that PPTN neurons may carry reward information. To elucidate the functional role of the PPTN in reward-seeking behavior, we recorded single PPTN neurons while monkeys performed a visually guided saccade task in which the predicted reward value was informed by the shape of the fixation target. Two distinct groups of neurons, fixation target (FT) and reward delivery (RD) neurons, carried reward information. The activity of FT neurons persisted between FT onset and reward delivery, with the level of activity associated with the magnitude of the expected reward. RD neurons discharged phasically after reward delivery, with the levels of activity associated with the actual reward. These results suggest that separate populations of PPTN neurons signal predicted and actual reward values, both of which are necessary for the computation of reward prediction error as represented by dopamine neurons.
منابع مشابه
A Neural Correlate of Predicted and Actual Reward-Value Information in Monkey Pedunculopontine Tegmental and Dorsal Raphe Nucleus during Saccade Tasks
Dopamine, acetylcholine, and serotonin, the main modulators of the central nervous system, have been proposed to play important roles in the execution of movement, control of several forms of attentional behavior, and reinforcement learning. While the response pattern of midbrain dopaminergic neurons and its specific role in reinforcement learning have been revealed, the role of the other neuro...
متن کاملContribution of pedunculopontine tegmental nucleus neurons to performance of visually guided saccade tasks in monkeys.
The cholinergic pedunculopontine tegmental nucleus (PPTN) is one of the major ascending arousal systems in the brain stem and is linked to motor, limbic, and sensory systems. Based on previous studies, we hypothesized that PPTN would be related to the integrative control of movement, reinforcement, and performance of tasks in behaving animals. To investigate how PPTN contributes to the behavior...
متن کاملReward prediction-related increases and decreases in tonic neuronal activity of the pedunculopontine tegmental nucleus
The neuromodulators serotonin, acetylcholine, and dopamine have been proposed to play important roles in the execution of movement, control of several forms of attentional behavior, and reinforcement learning. While the response pattern of midbrain dopaminergic neurons and its specific role in reinforcement learning have been revealed, the roles of the other neuromodulators remain elusive. Repo...
متن کاملEvaluation of nicotinic receptor of pedunculopontine tegmental nucleus in central cardiovascular regulation in anesthetized rat
Objective(s): Cholinergic neurons are important neurons in the Pedunculopontine tegmental nucleus (PPT). In this study, nicotinic receptor of the PPT in central cardiovascular regulation in the anesthetized rat was evaluated. Materials and Methods: Saline, acetylcholine (Ach; doses: 90 and 150 nmol), hexamethonium (Hexa; doses: 100 and 300 nmol) and higher doses of Hexa (300 nmol) + Ach (150 nm...
متن کاملPedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats.
Midbrain dopamine (DA) neurons respond to sensory cues that predict reward. We tested the hypothesis that projections from the pedunculopontine tegmental nucleus (PPTg) are involved in driving this DA cell activity. First, the activity of PPTg and DA neurons was compared in a cued-reward associative learning paradigm. The majority of PPTg neurons showed phasic responses to the onset of sensory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 15 شماره
صفحات -
تاریخ انتشار 2009